Matroids and Greedy Algorithms

Monday, 6 September 2021 2:00 PM

Matroids are combinatorial Structive that generalize anany
well-known set systems. They provide a unified theory of
why greedy algorithms work.
Given:
$$S = \{s_1, s_2, ..., s_n\}$$

 $I \subseteq 2^S$ is a femily of subsets of S
(ate a set system)
(1) I runst be hereditary or downward-dosed
(if $A \in I$, and $B \leq A$, then $B \in I$)
(assume throughout $I \neq p$)
the clearly $\phi \in I$
(2) Excharge property: $A \in I$, B is st. $|B| < |A|$
 $ard B \in I$. The $\exists x \in A \setminus B$ st. $B \cup \{x\} \in I$
 $B = \begin{cases} x \\ x \\ x \end{cases}$

finite
Example 2: Given a foundirected graph
$$G = (N, E)$$
,
consider (E, I) where $I = \{E' \subseteq E : E' \text{ is any clic }\}$.
i.e., all for ests in G are independent sets.
Claim : $M = (E, I)$ is a matroid, celled graphic metroid.
Do your self: prove that this is indeed a metroid

Exaple 3: Given a motion
$$A \in \mathbb{R}^{m \times n}$$
. Now
 $S = \{1, 2, 3, ..., n\}$, and $I = \{s' \in S: s.t.$ the volumns
with indices in S are linearly independent $\}$
 $I = 2 = 3 = 4 = 5 = 6$
 $I = 1 = 5 = 2 = 3 = 2$
 $I = 1 = 5 = 2 = 3 = 2$
 $I = 1 = 5 = 2 = 3 = 2$
 $I = 1 = 5 = 2 = 3 = 2$
 $I = 1 = 5 = 2 = 3 = 2$
 $I = 1 = 5 = 2 = 3 = 2$
 $A = (S, I)$ is
 $I = 1 = 5 = 2 = 3 = 2$
 $A = (S, I)$ is
 $I = (S, I)$ is called a linear vectorial, or
 $I = I = 1$ is called a linear vectorial, or
 $I = I = 1$ is called a linear vectorial, or
 $I = I = 1$ is called a linear vectorial, or
 $I = I = 1$ is called a linear vectorial, or
 $I = I = 1$ is called a linear vectorial of $I = 1$ is columns $I = 1$.
 $I = 1$ are not linearly independent

To find a max IS in the maturoid
$$M = (S, I)$$
, where $|S| = n$,
Consider the following algorithm:
 $T \leftarrow \varphi$
for $i = 1 - \dots n$
if $Tu\{s_i\} \in I$, add s_i to T
Subset of X

New suppose each element si has a nonnegative right

$$W(S_{i})$$
. Problem: find IS of maximum unight.

Magnitum assume $w(s_{i}) \ge w(t_{i}) \ge \dots \ge w(t_{n})$
 $T \in \phi$
for $i \ge 1 \dots n$
 uf Tusi $\in T$, add s_{i} to T

Claim: T obtained by the appritum is a nex not. IS.

Proof: Let $T = \{t_{i}, t_{i}, t_{s}, \dots, t_{k}\}$ in decreasing order of ut.

To $\frac{t_{i}}{s_{i}} \frac{t_{i}}{s_{i}} \frac{t_{i}}{s_{i}} \frac{t_{i}}{s_{i}} \frac{s_{i}}{s_{i}} \frac{s_{i}}{s_{i}$